II B.Tech - I Semester - Regular / Supplementary Examinations DECEMBER 2022

SIGNALS AND SYSTEMS

(Common for ECE, EEE)
Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	i) Define and sketch the following elementary continuous time signals. Unit impulse signal; Signum function; unit step function. ii) Evaluate the following integrals $\begin{aligned} & \int_{-\infty}^{\infty} \delta(t) \sin 2 \pi t d t \\ & \int_{-\infty}^{\infty}[\delta(t) \cos t+\delta(t-1) \sin t] d t \end{aligned}$	L2	CO1	7 M
	b)	Determine the power and rms value of the signal $x(t)=u(t)$.	L2	CO1	7 M
OR					
2	a)	If $x(t)=r(t)-r(t-1)-r(t-2)+r(t-3)$, then draw the signal, $y(t)=x(-t+1)$.	L2	CO1	7 M
	b)	Define i) Signal ii) System; classify systems with examples.	L2	CO1	7 M

UNIT-II

3	a)	Determine whether the following continuous-time system is Memory less, Time invariant, Linear, Causal and Stable $y(t)=x(t-2)+x(2-t)$	L3	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \end{aligned}$	7 M
	b)	Let $x(t)=u(t-3)-u(t-5)$ and $h(t)=e^{-3 t} u(t)$. Compute $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t})$.	L3	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \end{aligned}$	7 M
OR					
4	a)	Compute and plot $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}] * \mathrm{~h}[\mathrm{n}]$, where	L3	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \end{aligned}$	7 M
	b)	The response of an LTI system to a step input, $x(t)=u(t)$ is $y(t)=\left(1-e^{-2 t}\right) u(t)$. What is the response to an input of $\mathrm{x}(\mathrm{t})=4 \mathrm{u}(\mathrm{t})-4 \mathrm{u}(\mathrm{t}-1)$?	L3	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \end{aligned}$	7 M

UNIT-III

5 a) \begin{tabular}{l}
Find the trigonometric Fourier series for the

periodic signal $\mathrm{x}(\mathrm{t})$ shown below

 L3

CO1

CO 3
\end{tabular}

	b)	Find the complex exponential Fourier series coefficients of the signal $\mathrm{x}(\mathrm{t})=\sin 3 \pi \mathrm{t}+2 \cos 4 \pi \mathrm{t}$	L3	$\begin{array}{\|l\|} \mathrm{CO} 1 \\ \mathrm{CO} 3 \end{array}$	7 M
OR					
6	a)	Obtain the Fourier transform of a periodic train of impulses with period T.	L3	CO3	7 M
	b)	Find the Fourier transform of $x(t)=u(2 t)$, where $u(t)$ is the unit step function.	L3	CO3	7 M
UNIT-IV					
7	a)	The Fourier transform of a discrete-time signal is $\mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=1+3 \mathrm{e}^{-\mathrm{j} \omega}+2 \mathrm{e}^{-\mathrm{j} 2 \omega}-4 \mathrm{e}^{-\mathrm{j} 3 \omega}+\mathrm{e}^{-\mathrm{j} 10 \omega}$ Determine the signal $\mathrm{x}[\mathrm{n}]$.	L3	$\begin{array}{\|l\|} \hline \mathrm{CO} 2 \\ \mathrm{CO} 4 \\ \hline \end{array}$	7 M
	b)	State and Prove the following properties of Discrete Time Fourier Transform i) First Difference ii) Time Shifting iii) Time Convolution	L3	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 4 \end{aligned}$	7 M
OR					
8	a)	Consider a discrete-time LTI system with impulse response $h[n]=(1 / 2)^{n} u[n]$. Use Fourier transforms to determine the response to the following input signal $\mathrm{x}[\mathrm{n}]=(3 / 4)^{\mathrm{n}} \mathrm{u}[\mathrm{n}] .$	L4	$\begin{array}{\|l\|} \hline \mathrm{CO} 2 \\ \mathrm{CO} 4 \\ \hline \end{array}$	7 M
	b)	Let $\mathrm{x}[\mathrm{n}]$ and $\mathrm{h}[\mathrm{n}]$ be signals with the following Fourier transforms $\begin{aligned} & \mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=3 \mathrm{e}^{\mathrm{j} \omega}+1-\mathrm{e}^{-\mathrm{j} \omega}+2 \mathrm{e}^{-\mathrm{j} 3 \omega} \\ & \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=-\mathrm{e}^{\mathrm{j} \omega}+2 \mathrm{e}^{-2 j \omega}+\mathrm{e}^{\mathrm{j} \omega} \end{aligned}$ Determine $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}] * \mathrm{~h}[\mathrm{n}]$	L4	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 4 \end{aligned}$	7 M

UNIT-V

9	a)	State and Prove the following properties of Laplace Transform i) Time Shifting ii) Shifting in the s-Domain iii) Time Scaling	L3	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 5 \end{aligned}$	7 M
	b)	Find out the Laplace transform of the signal shown in below figure.	L4	$\begin{array}{\|l\|l} \hline \mathrm{CO} 2 \\ \mathrm{CO} \end{array}$	7 M
OR					
10	a)	Find the all possible sequences with ZTransform given by $X(z)=\frac{1-\frac{1}{2} z^{-1}}{1+\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}}$	L4	$\begin{array}{\|l\|l} \mathrm{CO} 2 \\ \mathrm{CO} \end{array}$	7 M
	b)	Find the Z-Transform of $\begin{aligned} & \mathrm{x}_{1}(\mathrm{n})=\mathrm{n} \cdot \mathrm{u}(\mathrm{n}) ; \\ & \mathrm{x}_{2}(\mathrm{n})=(\mathrm{n}-3) \cdot \mathrm{u}(\mathrm{n}-3) ; \\ & \mathrm{x}_{3}(\mathrm{n})=(\mathrm{n}-3) \cdot \mathrm{u}(\mathrm{n}) \end{aligned}$	L4	$\begin{array}{\|l\|l} \hline \mathrm{CO} 2 \\ \mathrm{CO} \end{array}$	7 M

